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Abstract. mypyvy is an open-source tool for specifying transition systems
in first-order logic and reasoning about them. mypyvy is particularly suit-
able for analyzing and verifying distributed algorithms. mypyvy implements
key functionalities needed for safety verification and provides flexible in-
terfaces that makes it useful not only as a verification tool but also as
a research platform for developing verification techniques, and in particu-
lar invariant inference algorithms. Moreover, the mypyvy input language is
both simple and general, and the mypyvy repository includes several dozen
benchmarks—transition systems that model a wide range of distributed and
concurrent algorithms. mypyvy has supported several recent research efforts
that benefited from its development framework and benchmark set.

1 Introduction
mypyvy is an open-source! research platform for automated reasoning about symbolic
transition systems expressed in first-order logic. A chief design goal for mypyvy is
to lower the barrier to entry for developing new techniques for solver-aided analysis
and verification of transition systems. As a result, mypyvy’s modeling language is
simple and close to the underlying logical foundation, and the tool is designed as a
collection of reusable components, making it easy to experiment with new verification
techniques.

The main application domain of mypyvy is verification of complex distributed al-
gorithms. Following prior work [33,34], transition systems in mypyvy are expressed in
uninterpreted first-order logic (i.e., without theories). Using uninterpreted first-order
logic is motivated by the experience that solvers often struggle when theories (e.g.,
arithmetic, arrays, or algebraic data types) are combined with quantifiers. Quantifiers
are essential for describing distributed algorithms (e.g., to state properties about
all messages in the network), but theories can often be avoided, yielding improved
automation.

mypyvy consists of a language for expressing transition systems directly as logical
formulas but in a convenient manner (Sec. 2), a tool for reasoning about such systems,
and a collection of benchmarks accumulated over the last few years (Sec. 2.1). Fig. 1
depicts mypyvy’s components, which are divided to solver-based queries (Sec. 3) and
invariant inference algorithms (Sec. 4). Solver-based queries such as inductiveness
checking and bounded model checking are answered by translating them into satis-
fiability checks that are sent to external first-order solvers. These queries are used as
basic building blocks for developing invariant inference algorithms. mypyvy includes
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an implementation of two such algorithms: PDRY [21] and Primal-dual Houdini [35].
mypyvy’s internals are designed with the goal of making it easy to build on (Sec. 5).
mypyvy interacts with multiple solvers, and currently supports Z3 [13] and cvc5 [2]. To
present counterexamples (states, transitions, or traces) in a user-friendly way, mypyvy
supports custom printers that simplify and improve readability of counterexamples.

mypyvy is not just the sum of the analyses currently available; it is a platform for
doing research in automated verification. Several projects (including ongoing ones)
use the mypyvy foundation and benchmark suite to build new invariant inference
technique, user interfaces for verification and exploration, and, most recently, liveness
verification techniques (Sec. 6).

mypyvy’s first-order modeling is inspired by Ivy [30,34], which promoted the idea
of modeling distributed systems in the EPR decidable fragment of first-order logic.
Ivy includes a rich and modular high-level imperative specification language, as well
as mechanisms for creating executable implementations, specification-based testing,
liveness verification, and more. As a result, Ivy’s syntax, semantics, and code base
are more complicated than what would be ideal for enabling rapid exploration of new
techniques. In contrast, mypyvy’s focus on transition systems, with a simple syntax
and semantics, makes it especially suited for enabling verification research.? Moreover,
mypyvy’s code base is intentionally designed, documented, and typed (using Python’s
support for type annotations), to make it easy to build on and extend.

Broadly, mypyvy has three target audiences:

1. Researchers interested in modeling and verifying distributed algorithms. mypyvy
offers a user-friendly input language, several queries that assist in developing
models of distributed algorithms, readable counterexamples, and access to a
variety of automatic verification algorithms.

2. Researchers developing verification techniques, and invariant inference in par-
ticular. mypyvy offers a starting point for implementing new algorithms on top
of a developer-friendly code base. mypyvy includes many useful building blocks,
and has already been successfully used in several research projects.

3. Researchers looking for benchmarks for various verification tasks. mypyvy in-
cludes a significant set of transition systems (and their invariants), which can
serve as benchmarks for invariant inference or other verification tasks.

2 There are current open-source efforts to automatically translate Ivy to mypyvy [9,37],
which would allow Ivy users to benefit from mypyvy’s algorithms.
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sort node 38 unsat trace {
sort value 39 vote
sort quorum 40 vote
41 vote
immutable relation member(node, quorum) 42 decide
axiom forall Q1, Q2. exists N. 43 decide
member (N, Q1) & member (N, Q2) i;l ) assert !safety
mutable relation v(node, value) 46
mutable relation b(node) 47 sat trace {
mutable relation d(value) 48 any transition
49 assert exists N, V. v(N,V)
init forall N, V. !v(N,V) 50 decide
init forall N. !'b(N) 51 assert exists V. d(V)
init forall V. !d(V) 52}

transition vote(n: node, x: value)
modifies v, b
'b(n) &
(forall N, V.
v'(N, V) <-> v(N, V) | (
(forall N. b’(N) <-> b(N)

— =

transition decide(x: value)
modifies d
(exists Q. forall N. member(N, Q) -> v(N, x)) &
(forall V. d’(V) <-> d(V) | V = x)

safety [agreement] forall X, Y. d(X) & d(Y) -> X =Y
invariant [decision_quorums] forall X. d(X) ->
exists Q. forall N. member (N, Q) -> v(N, X)
invariant [unique_votes] forall N, X, Y. v(N, X) & v(N, Y) -> X =Y
invariant [voting_bit] forall N, X. v(N, X) -> b(N)

zerostate theorem forall Q. exists N. member (N, Q)
onestate theorem unique_votes & decision_qurums -> agreement
twostate theorem forall N, X. voting_bit & vote(N, X) -> voting_bit’

mypyvy 3

> mypyvy verify consensus.pyv

checking init:

implies invariant agreement..ok.
checking transition vote:

preserves invariant agreement..ok.
checking transition decide:
preserves invariant agreement..no!

counterexample:
universes:
sort node (1): node®
sort quorum (1): quorum®
sort value (2): value® valuel

immutable:
member (node® , quorum®)

state 0:
d(valuel)
v(node0®,value®)

state 1:
d(value®)
d(valuel)
v(node®,value®)

error consensus.pyv: invariant
agreement is not preserved by
transition decide

Fig. 3. A counterexample to
induction (CTI) for the toy
consensus protocol’s safety
property without additional

Fig. 2. The toy consensus example in mypyvy. invariants.

2 Modeling Language

We present mypyvy through a simple example of modeling and analyzing a toy
consensus protocol.? To get started, the user first expresses a transition system in
mypyvy’s input language, which is a convenient syntax for (many-sorted) uninter-
preted first-order logic. A mypyvy model of the toy consensus protocol is shown
in Fig. 2. In this protocol, each node votes for a single value, and once a majority or
quorum of nodes vote for the same value a decision takes place. Because majorities
intersect, the protocol ensures that at most one value is decided on. Modeling an
algorithm or system of interest as a transition system in first-order logic may involve
some abstraction, e.g., modeling majorities as abstract quorums such that every two
quorums intersect [32].

States. The first step is to choose the types over which the transition system is
defined. In the fashion of first-order logic, the basic types are uninterpreted sorts
(mypyvy does not use SMT theories). In the example, we use the sorts node, value,
and quorum to represent the nodes that participate in the distributed system, the
values they choose from, and the sets of nodes that suffice for a decision (we abstract

3 While not useful as a consensus protocol, this example does illustrate important aspects
from proofs of complex, widely used consensus protocols like Paxos [25].
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majorities following [4,33]). The state of the system is modeled by variables which can
be constants (individuals), relations, or functions, whose domains are constructed
from the aforementioned sorts. Each state variable is either immtable, which means
it does not change throughout an execution of the system, or mutable, which means
it may change with each transition. In the example, all state variables are relations.
An immutable relation member denotes membership of a node in a quorum. The
other relations are mutable: v records votes of nodes for values, b tracks which nodes
already voted, and d records decisions.

Azioms. mypyvy allows the user to define a “background theory” over the immutable
symbols, which restricts the state space, via axiom declarations. In the example, the
property that any two quorums intersect (abstracting majorities) is expressed as an ax-
iom for the member relation (line 6). Another common background theory that is use-
ful when modeling distributed protocols in mypyvy is a total order, which can be used
to abstract the natural numbers in first-order logic (e.g., to model rounds or indices).

Initial states. The initial states are defined as those that satisfy all init declarations.
In the example, these declare that all mutable relations are initially empty (lines 13
to 15).

Transitions. The transitions of the system are expressed by transition declarations.
The semantics is that each transition executes atomically and can modify the sys-
tem’s state. Transitions can have parameters, which are local variables that are
assigned nondeterministically whenever the transition is executed. The example has
two transitions: vote(n, z) and decide(x) (lines 17 to 27). An important design choice
of mypyvy is that the user specifies transitions by explicitly writing logical formulas.
Each transition is defined over two states: variables in the usual notation refer to
the state before the transition is applied (pre-state), and primed variables refer to
the state after the transition (post-state). Pre-conditions are encoded as conjuncts
in the formula about the pre-state; for example, vote requires that the node has
not already voted by specifying !b(n). Post-conditions are encoded as conjuncts
about the post-state, relating it to the pre-state; for example, vote specifies that the
relation b is updated to include exactly the same nodes as before in addition to n.
Writing transitions directly through formulas offers great flexibility, but in order to
write these formulas succinctly, a transition starts with a modifies clause that declares
which mutable state variables are changed by it. For any mutable state component
not in the modifies clause, mypyvy implicitly adds a conjunct encoding that the
component does not change. Formally, the transition relation is the disjunction of the
formulas from each of the transitions, where parameters are existentially quantified.

Safety. Finally, the user may specify safety properties using first-order formulas in
safety declarations. The agreement safety property in the example (line 29) states
that at most one value is decided. A safety property holds if it is satisfied by every
state that is reachable from the an initial state via a sequence of transitions.
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2.1 Benchmarks

The mypyvy repository includes over 30 transition systems collected over the years.
Some of these were translated from Ivy, while others were directly modeled in mypyvy.
The benchmarks model a variety of distributed and concurrent algorithms, including
consensus algorithms, networking algorithms, and cache coherence protocols. The
variety of benchmarks, which also vary in complexity, is useful for evaluating and
experimenting with new verification techniques.

3 Satisfiability-Based Queries

Once a transition system is specified, mypyvy supports several satisfiability-based
queries over it, which are directly translated to satisfiability checks and handed off to
solvers (currently Z3 [13] and cvc5 [2] are supported). These queries are useful building
blocks for developing more advanced solver-aided algorithms, and for users who are
interested in analyzing specific systems (especially during the model development pro-
cess). For most queries, mypyvy provides counterexamples based on satisfying models
obtained from solvers. And while solvers are not guaranteed to terminate, mypyvy
makes it easy to follow the EPR fragment restrictions, which ensures termination.

3.1 Queries

Inductiveness checking. mypyvy allows the user to add invariant declarations to prove
safety by induction. These are first-order formulas, whose conjunction (together
with the safety properties) forms a candidate inductive invariant. Fig. 2 lists three
supporting invariants (lines 30 to 33). The most common query in mypyvy is to
check if the candidate invariant is inductive. When translating an inductiveness check
to the solver, mypyvy splits it into one solver query per (transition, invariant) pair.
In our experience, splitting the disjunction outside the solver improves performance
and reliability, and, best of all, improves transparency for the user when one of the
cases is more problematic (e.g., takes a long time).

Theorems. In addition to invariants, which are meant to hold in all reachable states of
the transition system, mypyvy supports checking theorem declarations, which specify
first-order formulas that are expected to be valid modulo the background theory (i.e.,
axioms). zerostate theorems refer to immutable state variables only, onestate theorems
may refer to the mutable state variables as well, and twostate theorems involve two
states, similarly to transitions. In the toy consensus example, a zerostate theorem
(line 35) is used to state that quorums cannot be empty (follows from the quorum
intersection axiom); a eonestate theorem (line 36) is used to state that, given the
background theory, the unique_votes and decision_quorums invariants imply the agreement
safety property; and a twostate theorem (line 37) is used to check that the voting bit
invariant is preserved by the vote transition.
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Bounded model checking (BMC). Tt is often useful to explore (un)reachability of a
safety violation via BMC. Given a transition system and a safety property, BMC
asks, “Is there a counterexample trace with < k transitions?” BMC is implemented
in the usual way, by unrolling the transition relation.

Trace queries. Trace queries allow the user to explore the possible executions of the sys-
tem in a more targeted way than BMC. This is useful both when the user in interested
only in specific scenarios, and when BMC does not scale to sufficient depth. As an illus-
tration, in a model of a distributed system with many protocol steps, BMC may only
reasonably scale to a small depth, say 5 transitions, but many interesting behaviors of
the system may not occur until at least 10 or 15 transitions. In Fig. 2, lines 38 to 45
show a query for the nonexistence of an execution trace that starts with three vote tran-
sitions, followed by two decide transitions, and then reaches a safety violation. mypyvy
translates such a query to a first-order formula that is checked for unsatisfiability.

As a complement of trace queries that are expected to be unsatisfiable (specified
by the unsat keyword), it is also useful to make sat trace queries that are expected to
be satisfiable, demonstrating that some behaviors are indeed possible.# For example,
lines 47 to 51 show a query expecting the existence of a trace that starts with any
transition after which there exists a vote, followed by a decide transition after which
there exists a decision. (That is possible when the number of nodes is 1.) Such
satisfiable trace queries are especially useful for detecting vacuity bugs, where, due
to a modeling error, some transitions mistakenly cannot execute, potentially making
the system erroneously safe.

Relazed Bounded Model Checking (BMC=). So far we discussed concrete traces.
mypyvy can also search for relaxed counterexample traces of a bounded depth. A
relaxed trace consists of a sequence of interleaved transitions and “relaxation steps”,
where some elements get deleted from the structure. As shown in [21], a relaxed
counterexample trace that starts at an initial state and ends in a safety violation
proves that there is no universally quantified inductive invariant that implies safety.
This is the case in the toy consensus example—a relaxed counterexample trace found
by mypyvy for this example is provided in Appendix A. The key to implementing
relaxed BMC queries is encoding universe reduction between states. mypyvy does
so by introducing a mutable unary relation active for each sort and using it as a
guard in every quantifier, effectively restricting the universe in each state to the
“active” part. Relaxation steps are then modeled by adding a relax transition where
each active relation in the post-state is a subset of the corresponding one in the
pre-state (expressed as a universally quantified formula); all other state variables are
unmodified over the active part. Finally, a relaxed BMC query is encoded similarly
to a BMC query (with the added relax transitions), except that, due to the use of
different active universes, the axioms are asserted not only at the beginning of the

4 mypyvy uses solver queries to generate executions of the transition system. A solver
is needed due to mypyvy’s flexible and abstract modeling language. More imperative
modeling languages, e.g. that of Ivy, admit execution/simulation without solvers,
which can be useful for invariant inference as well [40,42]. Such simulation can also be
implemented for a fragment of mypyvy’s language.
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trace but also after every (relaxation) step, together with assertions requiring that
the active universe contains the constants and is closed under functions.

3.2 Counterexamples

When a query fails (except for a sat trace query), it is because the formula sent to the
solver was satisfiable. In such cases, mypyvy obtains a model from the solver and
displays a counterexample—which can be a state, a transition, or a trace, depending
on the failing query. For example, when inductiveness checking fails, it returns either a
1-state model demonstrating a violation of safety at an initial state, or a 2-state model
demonstrating a counterexample to induction (CTT). As another example, when BMC
finds an execution that violates safety, it returns a k-state model providing a coun-
terexample trace. Fig. 3 shows a CTI (2-state model) for the toy consensus protocol
when the invariants supporting the safety property are omitted. In general, mypyvy
displays a k-state model by first listing the universe of each sort and the interpretations
of the immutable symbols (member in our example). Then, for each of the k states,
the interpretations of the mutable symbols in that state are printed. For relations, by
default mypyvy only prints positive literals, i.e., the tuples that are in the relation.

Annotations, plugins, and custom printers. In some cases, the default counterexample
printing of mypyvy is not as readable as it could be. For example, if one of the
sorts in the transition system is totally ordered (using a binary relation and suitable
axioms), it would make sense to name the elements of that sort according to the
total order. To improve the readability of counterexamples, mypyvy supports custom
formatting via printer plugins and annotations. Every declaration in mypyvy can be
tagged with annotations, which have no inherent meaning, but can be detected by
plugins, e.g., to cause things to be printed differently. For example, the declaration
sort round @printed_by(ordered_by_printer, le) invokes the ordered_by_printer plugin and tells
mypyvy that the sort round should be printed in the order given by the 1e relation.
mypyvy provides several other custom printers, including one for printing sorts that
represent sets of elements coming from another sort (illustrated in Appendix A
Fig. 5). Users can also implement their own custom printing plugins in Python.
mypyvy also supports a handful of other annotations. eno_print instructs mypyvy
not to print a sort, relation, constant, or function at all, which can be useful either be-
cause of a custom printer for another symbol, or temporarily because the model is large
and the symbol is irrelevant to the current debugging session. eno_minimize is used to in-
struct mypyvy’s model minimizer not to minimize elements of a certain sort or relation.
The annotation framework is extensible, and we expect more uses for it to come up.

3.3 Decidability and Finite Counterexamples via EPR

In general, mypyvy does not restrict the quantifier structure used in formulas, nor the
signatures of state variables. As a result, the first-order formulas that encode different
queries in mypyvy are not guaranteed to reside in any decidable fragment and solvers
may diverge. However, a common practice when working with mypyvy is to use the
effectively propositional (EPR) [38,36] fragment of first-order logic, which imposes
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certain restrictions on functions and quantifier alternations. To encode a system in
EPR (i.e., ensure that formulas generated for all queries are in EPR), the user can rely
on recently developed methodologies [33,39]. For example, the toy consensus example
of Fig. 2 is in EPR. Satisfiability of EPR is decidable, and reliably checked by solvers.
EPR enjoys a small-model property, which implies queries have finite counterexamples
(if any). Solver reliability and finite counterexamples are key enablers for more
advanced algorithms (e.g., invariant inference) that make thousands of solver queries
and employ model-based techniques. mypyvy’s language is close to the underlying
logic used in queries, making it relatively easy to follow the EPR restrictions.

4 Invariant Inference

mypyvy’s design aims to make it easy to implement complex solver-aided analysis
algorithms on top of the simpler queries. Two such algorithms, for automatically
finding inductive invariants, are included in mypyvy: PDRY and Primal-dual Houdini.

Universal Property-Directed Reachability (PDRV ). mypyvy includes an implementa-
tion of PDRY [21], which infers universally quantified inductive invariants in first-order
logic. Like IC3/PDR [7], PDRY constructs invariants incrementally by finding back-
wards reachable states and “blocking” them relative to a “frame”. To block a state,
PDRY computes a “forbidden sub-state” that rules out all states containing a certain
pattern. If PDRY succeeds, it returns the inductive invariant in the form of a conjunc-
tion of universally quantified clauses. Otherwise, it either loops forever or returns a
relaxed trace, proving that no universally quantified inductive invariant exists for the
property. On the toy consensus example, PDRY returns a relaxed trace similar to the
one obtained by BMCE. mypyvy’s implementation is the state-of-the-art implementa-
tion of PDRY, and was used for comparison with PDRY in various papers [23,35,40|.
The results demonstrate the success of mypyvy’s PDRY implementation in solving
benchmarks that only require universally quantified invariants.

Primal-Dual Houdini. Primal-dual Houdini [35] is a recent invariant inference al-
gorithm based on a formal duality between reachability in transition systems and
a notion of incremental induction proofs. mypyvy includes an implementation of
Primal-dual Houdini for universally quantified invariants. Primal-dual Houdini works
best for transition systems where the inductive invariant can be constructed in-
crementally, adding one universally quantified clause at a time. Several complex
distributed algorithms have this feature. In cases where the invariant cannot be
constructed incrementally, Primal-dual Houdini can find a witness for that fact.
See [35] for more details and an empirical evaluation. Primal-dual Houdini was
prototyped using mypyvy’s infrastructure, and its development is an example of the
usefulness of mypyvy for research in invariant inference.

5 Designing mypyvy’s Internals

We designed mypyvy’s internals with the goal of making it easy to build on. The
most important aspects of the internals from the developer’s perspective are (1) using
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typed Python, (2) the design of the abstract syntax trees (ASTs), and (3) the interface
to the underlying first-order solver. mypyvy is written in statically typed Python
using the mypy type checker. Types not only help catch bugs, but also document
the interfaces available to the developer. In our experience, types allow developers
to get up to speed more quickly on the code base and facilitate communication.

The ASTs for representing logical formulas in mypyvy were designed to support
symbolic manipulation, as is common in solver-aided algorithms. This led us to avoid
any additional intermediate representations between the ASTs representing the user-
level formulas and the ASTs representing the input to solvers. We also structured the
ASTs so that it is easy to (re)compute any analysis performed. For example, instead
of using a traditional (mutable, long-lived) symbol table to resolve names, mypyvy
uses a purely functional context to track scopes during AST traversals. The context
is thrown away and recomputed every time the AST is traversed. This makes it easy
to traverse programmatically generated ASTS, without needing to update any symbol
tables or other global data structures, and the extra run time overhead is negligible.

Developers who use mypyvy often want to make many queries to the underlying
solvers (currently Z3 and cvcb). We expose two interfaces for this. First, many
common primitives, such as those discussed in Sec. 3.1, are exposed as a library.
Second, mypyvy has a lower-level solver interface, where developers can issue their
own satisfiability queries, and also gain access to minimized models and minimized
unsat cores. Furthermore, developers of sophisticated invariant inference algorithms
may have many thousands of queries to run, so mypyvy supports running many
solvers in parallel.

6 Works Using mypyvy

One of mypyvy’s goals is to serve the research community and enable research on
verification, and invariant inference in particular. Indeed, in recent years several
works have built on mypyvy or used it to various extents.

Phase-PDRY [14] is a user-guided invariant inference technique. The user provides
a phase structure to convey temporal intuition, and suitable phase invariants are
found using an adaptation of PDRY. Phase-PDRY was developed on top of the
mypyvy code base and mypyvy’s PDR” implementation, and its evaluation uses
benchmarks available from mypyvy augmented with phase structures.

SWISS [18] is an invariant inference algorithm that finds quantified invariants,
including quantifier alternations, using explicit search. While SWISS does not use
the mypyvy code base (it is implemented in C+-), it accepts mypyvy’s input files
and its evaluation uses benchmarks available from mypyvy.

P-FOL-IC3 [23] is a variant of IC3/PDR that can find invariants with arbitrary
quantification using quantified separation [22]. P-FOL-IC3 was implemented using
mypyvy’s code, and also benefited from mypyvy’s benchmark set.

IC3PO [15,16] is an IC3/PDR variant that finds quantified invariants for pro-
tocols by analyzing finite instances. It does not use mypyvy’s code, but is evaluated
on some of mypyvy’s benchmarks, manually translated to its input format.
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LVR [41] develops a methodology for proving liveness properties. It uses mypyvy
“twice’™ first, as a modeling language and a source of benchmarks, and second, as
an invariant inference engine (using P-FOL-IC3) to find invariants that are required
to support a liveness proof based on ranking functions.

7 Related Work

Several tools promote specification and verification of systems and algorithms us-
ing first-order logic, dating back to Abstract State Machines [6,17]. Alloy [20] is a
relational modeling language and a tool that performs bounded verification, i.e.,
bounding the size of the universe of each sort. Alloy goes beyond first-order logic and
has concepts such as transitive closure, but it shares mypyvy’s emphasis on using
uninterpreted relations and quantifiers, rather than SMT theories. Electrum [8,29]
is an extension of Alloy that was recently integrated into Alloy 6 [1]; it essentially
turns Alloy into a modeling language for transition systems. When universe sizes
are bounded, Electrum/Alloy 6 can use finite-state model checkers to verify safety
as well as liveness properties.

Ivy [31,34] is a multi-modal verification tool that supports modeling using first-
order logic and EPR as well as some decidable SMT theories, modular reasoning, ex-
tracting executable implementations, liveness verification, specification-based testing,
and more. Unlike Alloy, Ivy is not restricted to bounded verification; instead, it relies
on user-provided inductive invariants and restricts the quantifier-alternation structure
of verification conditions to ensure decidability of unbounded verification queries.

Verification of transition systems is also the focus of the TLA™ toolbox [26],
where transition systems are expressed in a very rich logic (based on set theory).
As a result, verification is restricted to model checking bounded instances [24,43]
similar to Alloy, or manually writing detailed machine-checked proofs [10].

The IronFleet project [19] verifies distributed systems by formalizing transition
systems and refinement in Dafny [27], a general-purpose deductive verification lan-
guage. In IronFleet, transition systems are expressed using the rich Dafny type system,
which is based on SMT combined with quantifiers. But as a result, queries to Z3, the
underlying SMT solver, suffer from instability, especially when quantifiers—which
are handled using triggers—are involved [28].

Compared to the aforementioned systems, mypyvy takes a similar approach to
Ivy in using first-order logic without theories and aiming for unbounded verification,
but unlike Ivy it focuses on automatically finding inductive invariants, and enabling
research in that direction. We note that automated invariant inference depends on
the reliability of invariant checking and related queries, which is absent from Dafny,
TLA+, or Alloy (for the unbounded case), and obtained in mypyvy by using EPR
in the style of [33].

Another related line of research is developing intermediate representation lan-
guages for invariant inference. VMT [11] is a format that extends SMT-LIB [3] to
a transition system semantics. Constrained Horn Clauses (CHCs) [5,12] is another
SMT-LIB extension that is similar to transition systems but more general (it captures,
e.g., recursive programs). Both VMT and CHCs are typically used with rich SMT
theories, whereas mypyvy’s logic is centered around uninterpreted first-order logic
and quantifiers.
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Examples of mypyvy’s output

When invoked on the toy consensus example, relaxed BMC of bound (depth)

5 returns the relaxed trace depicted in Fig. 4, indicating that universally quantified
invariants are insufficient to prove safety in this case. The trace starts in a state
whose universe has two nodes node®,nodel, two values value®, valuel and two
quorums: quorum® = {nodel}, quoruml = {node®,nodel} (note that quorum® is
not a majority set, but the quorum intersection axiom is satisfied). The relaxed trace
consists of the transitions

1.
2.
3.

vote(nodel, value®),

decide(valueO) based on quorum quorum,

a relaxation step that omits node nodel and quorum quorum@ (as indicated by
the fact that active_node does not hold for them after the decrease_domain
step),

vote(node®, valuel),

decide(valuel) based on quorum quoruml, which after the relaxation step is just
{node®} (the quorum intersection axioms are still satisfied since quorum® is gone).

At this point, both value® and valuel have been decided, violating the agreement
property.
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> mypyvy bmc --depth=5 --relax consensus.pyv

bmc checking the following property up to depth 5

forall X:value, Y:value. d(X) & d(Y) -> X =Y
found violation: state 2:
universes: active_node (node®)
sort node active_node (nodel)
node® active_quorum(quorum®)
nodel active_quorum(quoruml)
sort quorum active_value(value0)
quorum@® active_value(valuel)
quoruml b(nodel)
sort value d(value®)
value® v(nodel,value®)
valuel
transition decrease_domain
immutable:

member (node® , quoruml)
member (nodel, quorum®)
member (nodel, quoruml)

state 3:
active_node (node®)
active_quorum(quoruml)
active_value(value®)

state 0: active_value(valuel)
active_node (node®) b(nodel)
active_node (nodel) d(value®)

active_quorum(quorum®)
active_quorum(quoruml)
active_value(value®)
active_value(valuel)

transition vote

state 1:
active_node (node®)
active_node (nodel)
active_quorum(quorum®)
active_quorum(quoruml)
active_value(value®)
active_value(valuel)
b(nodel)
v(nodel,value®)

transition decide

Fig. 4. A relaxed trace proving that the safety property of the toy consensus protocol

v(nodel,value®)
transition vote

state 4:
active_node (node®)
active_quorum(quoruml)
active_value(value®)
active_value(valuel)
b(node®)
d(value®)
v(node®,valuel)

transition decide

state 5:
active_node (node®)
active_quorum(quoruml)
active_value(value®)
active_value(valuel)
b(node®)
d(value®)
d(valuel)
v(node®,valuel)

cannot be proven with a universally quantified inductive invariant.
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> mypyvy verify consensus.pyv

checking init:

implies invariant agreement... ok.
checking transition vote:

preserves invariant agreement... ok.
checking transition decide:

preserves invariant agreement... no!

counterexample:
universes:
sort node
node®
sort quorum
{node0}
sort value
value®
valuel

immutable:
member (node® , {node®})

state 0:
d(valuel)
v(node® ,value®)

state 1:
d(value®)
d(valuel)
v(node®,value®)

error consensus.pyv: invariant agreement is not preserved by transition decide

Fig.5. A counterexample to induction (CTI) for the toy consensus protocol’s
safety property without additional invariants, printed using the custom set printer
(sort quorum @printed_by(set_printer, member))
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